
ref0 6 12 18

0

20

40

60

80

1

3

5

LOC Speedup

Minimum ULP (10^)

L
O

C

S
p
e

e
d

u
p

(x
1

0
0

%
)

(a) LOC/speedup for sin()

ref0 6 12 18

0

20

40

60

80

1

2

3

LOC Speedup

Minimum ULP (10^)

L
O

C

S
p
e

e
d

u
p
 (

x
1

00
%

)

(b) LOC/speedup for log()

ref0 6 12 18

0

30

60

90

120

1

4

7

LOC Speedup

Minimum ULP (10^)

L
O

C

S
p
e

e
d

u
p
 (

x
1

0
0

%
)

(c) LOC/speedup for tan()

-3.14 -1.57 0 1.57 3.14
1e0

1e4

1e8

1e12

1e16

1e20

Input Argument

U
L

P
 E

rr
o

r

(d) ULP error for sin() rewrites

0 2 4 6 8 10
1E+0

1E+4

1E+8

1E+12

1E+16

1E+20

Input Argument

U
L

P
 E

rr
o

r
0 2 4 6 8 10

1e0

1e4

1e8

1e12

1e16

1e20

Input Argument

U
L

P
 E

rr
o

r

(e) ULP error for log() rewrites

-1.6 -0.8 0 0.8 1.6
1E+0

1E+4

1E+8

1E+12

1E+16

1E+20

Input Argument

U
L

P
 E

rr
o

r

(f) ULP error for tan() rewrites

Figure 4. Representative kernels from Intel’s implementation of math.h. Increasing ⌘ produces rewrites which interpolate between double-
single- and half-precision (vertical bars, shown for reference) (a-c). Errors introduced by reduced precision are well-behaved (d-f) and
amenable to MCMC sampling.

deleting an instruction does not correspond to deleting a term and
will usually produce wildly inaccurate results.

Reference points are given on the far left of each plot in Fig-
ure 4. The original kernels range in length from 66 to 107 lines of
code (LOC), and represent a baseline speedup of 1x. Figures 4(a-c)
show the results of varying ⌘ between 1 and 10

18, approximately
the number of representable double-precision floating point values.
For reference, we have highlighted ⌘ = 5 ·109, and 4 ·1012, which
correspond respectively to the ULP rounding error between the
single- and half-, and double-precision representations of equiv-
alent floating-point values. Setting ⌘ to either value and provid-
ing STOKE with a double-precision target corresponds to asking
STOKE to produce a single- or half-precision version of a double-
precision algorithm.

By increasing ⌘, STOKE is able to experiment with modifi-
cations to the code which meet the desired bounds on precision.
The result is a set of implementations that interpolate between dou-
ble, single-, half-precision and beyond. For very large ⌘, STOKE
is able to remove nearly all instructions (for ⌘ = ULLONG MAX,
not shown, STOKE produces the empty rewrite), and produce
speedups of up to 6x over the original implementations. How-
ever performance improvements grow smoothly and are still sig-
nificant for reasonable precisions. Although no longer available,
Intel at one point offered a variable-precision implementation of
libimf, which allowed the user to trade performance for higher
quality results. Using only the full double-precision implemen-
tation, STOKE is effectively able to automatically generate the
equivalent library.

Two factors complicate the verification of the rewrites discov-
ered by STOKE for libimf: code length and the mixture of fixed-
and floating-point computation. At over 100 instructions in length,
verifying a rewrite against the kernels in libimf is well beyond
the capabilities of current floating-point decision procedures. Addi-
tionally, the kernels in libimf use hardware-dependent bit-wise
arithmetic to extract the fields from a floating-point value for use as
indices into a table of constants. Although an abstract interpretation
based on ranges might be able to deal with the primarily polynomial

ref 0 6 12 18

0

10

20

30

40

1

2

3

4

5

LOC Speedup Speedup

Minimum ULP (10^)

L
O

C

S
p

e
e

d
u

p

(x
1

0
0

%
)

(a) LOC/speedup for exp() (solid) and speedup for diffusion (dashed)

-3 -2.5 -2 -1.5 -1 -0.5 0
1E+0

1E+6

1E+12

1E+18

Input Argument

U
L

P
 E

rr
o

r

(b) ULP error for exp() rewrites

Figure 5. The diffusion leaf task from the S3D direct numeric sim-
ulation solver. Increasing ⌘ allows STOKE to discover rewrites
for the exp() kernel which trade precision for shorter code and
higher performance (a). The diffusion leaf task can tolerate a less-
than-double-precision implementation (vertical bar, shown for ref-
erence), which produces a a 27% overall speedup. Errors are well-
behaved (b).

operations of those kernels, without an appropriate set of invariants
for the values contained in those tables, any sound results of the
analysis would be uselessly imprecise.

