Uncertainty Quantification in High Performance Computing

Florian Augustin and Youssef M. Marzouk

Massachusetts Institute of Technology Department of Aeronautics and Astronautics

PLDI – APPROX Workshop 2014 Edinburgh, United Kingdom June 13, 2014

PLDI - APPROX Workshop 2014, page 1/11

Motivation and Objective

- Faults are inevitable in high-performance computing
- Fault handling is an active and diverse field of research:
 - Reliability:
 - Quantify the rate of faults
 - Allocate reliable and unreliable memory/operations to meet a user-specified level of reliability
 - Use checkpointing, redundancy, checkers, etc. to detect faults
 - Accuracy:
 - Exploit algorithm-dependent properties (conditioning, contraction, etc.) to allow for *small* faults [Stoyanov and Webster 2013]
 - Reformulate existing algorithms to make them *fault-resilient* [Bridges et al. 2012]
 - Allow users to specify an *acceptable level of variability* in the results of a code executed on unreliable hardware

Can uncertainty quantification help **trade acceptable inaccuracies for efficiency**?

A *possible way* of **controlling accuracy**:

 \blacktriangleright Hardware design may expose tuning controllers ν to the software engineer

- Allow for scaling of fault magnitudes by setting each controller $\nu \in [0,1]$
 - $\nu = 0$ means that no controller is applied; the code is executed on completely unreliable hardware
 - $\label{eq:relation} \mathbf{\nu} = \mathbf{1} \mbox{ means that all faults are filtered; the code} \\ \mbox{ is executed on completely reliable hardware }$
- Associate a cost function with the controller setting, for instance determined by the hardware specification

A possible way of controlling accuracy:

- Partition user code into n blocks
- Execute each block on a separate unit that is assigned to a controller ν_i , i.e., with a user-prescribed allowable fault magnitude

Spread of possible results of the code can be controlled by adjusting the controllers {*v*₁, ..., *v_n*}

Example: Singular values of a matrix A after a fault-corrupted QR decomposition

- Subdivide QR decomposition algorithm into 3 blocks
 - Compute Householder matrices
 - Compute $R = Q_n \cdots Q_1 A$
 - Assemble $Q = Q_1^T \cdots Q_n^T$
- Fault model:
 - Frequency of faults: 1 per 10⁵
 - Magnitude of faults: $1.0 \nu_i$
- ► Application: $A \in \mathbb{R}^{50 \times 50}$ with 8 distinct singular values
 - How much fault corruption can enter the computation while allowing correct reconstruction of the singular value multiplicities?

Example: Singular values of a matrix *A* after a fault-corrupted *QR* decomposition Perform 1000 runs with a fixed spectrum and a

random eigenbasis for each sample

• Controllers $\nu = \{0.0, 0.0, 0.0\},\$

i.e., the code is executed on unreliable hardware

- No reconstruction of the rank is possible
- Matrix may become singular because of faults
- Conclusion: QR decomposition should be computed with greater accuracy

Example: Singular values of a matrix A after a fault-corrupted QR decomposition Perform 1000 runs with a fixed spectrum and a random eigenbasis for each sample

• Controllers $\nu = \{0.9, 0.9, 0.9\},\$

i.e., the code is executed on nearly-reliable hardware

- Reconstruction of rank/multiplicities is possible
- Can the QR decomposition can be computed more efficiently (smaller ν)?

Example: Singular values of a matrix A after a fault-corrupted QR decompositionPerform 1000 runs with a fixed spectrum and a random eigenbasis for each sample

Controllers v = {0.8, 0.8, 0.8},
i.e., the reliability of the hardware is adjusted to the code

- Reconstruction of rank/multiplicities is possible
- Increased efficiency while maintaining sufficient accuracy

Finding the Optimal Controllers

- User specifies acceptable variability TOL of results/outcomes y
- ► Find controllers {*v*₁,...,*v*_n} that minimize the costs *C* and meet the tolerance TOL on variability of the results *y*_{*v*₁,...,*v*_n}

- Offline: compute and store controllers in a library (e.g., using DFO)
- Online: pick suitable controller for the application at hand

Example: Prothero-Robinson ODE with Contractive Paths

- Linear system of differential equations with system matrix A
- Attraction of trajectories to stable paths if A only has negative eigenvalues
- Application in modeling chemical and biological processes
- Find controllers ν₁, ν₂, ν₃ such that average variance of the eigenvalues of A is less than 1%

Optimal controllers:

ν_1	ν_2	ν_3
0.7237	0.5657	0.7608

Exact solution (without fault injection)

- 8 stable paths (red lines)
- 20 solution trajectories (black lines)
- Solver: implicit Euler method

PLDI - APPROX Workshop 2014, page 8/11

Example: Prothero-Robinson ODE with Contractive Paths

- Average trajectories over 1000 runs on ν-reliable hardware
- ▶ (0,0,0)-reliable hardware:

- Averages of fault-corrupted trajectories (left)
- Distribution of solutions at final time t = 20 (right); red dots indicate the exact solution
- ▶ Failed solutions (exceeding 10³) are filtered out (9.78% of runs)

Example: Prothero-Robinson ODE with Contractive Paths

- Average trajectories over 1000 runs on ν-reliable hardware
- (0.7237, 0.5657, 0.7608)-reliable hardware:

- Averages of fault-corrupted trajectories (left)
- Distribution of solutions at final time t = 20 (right); red dots indicate the exact solution
- ▶ Failed solutions (exceeding 10³) are filtered out (3.82% of runs)

Example: Jacobi Iterative Solver for the Helmholtz Equation

- Solution of the discretized Helmholtz equation, ∆u − αu = f, on [−1, 1]² with Dirichlet boundary condition u|_{∂[−1,1]²} = 0
- ▶ Jacobi iterative method, i.e., solve Au = F using the iteration $Du_{k+1} = F Ru_k$, A = D + R
- Use only one controller ν and apply 100 Jacobi iterations
- Optimize controller such that $Var[||u_{100} u_{99}||^2] \le \tau$ for $\tau \in \{10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$ (bottom to top in figure)
- Tighter tolerances yield more costly controllers

PLDI - APPROX Workshop 2014, page 10/11

UQ for HPC: Opportunities and Limitations

- Allow for controlled inaccuracies to increase efficiency, using a probabilistic approach
- > Potentially expensive offline phase to create a library of controllers
- Cheap online phase while executing the code
 - Soft errors have reduced impact on results due to controllers
 - Potential for faster performance due to fewer hard failures
- Approaches to achieve accuracy thresholds may not be general purpose tools, but rather seem problem-specific
 - Should then exploit common numerical properties like conditioning, damping, contraction, etc., to generalize the applicability of controllers
 - Possibly provide toolbox for frequently occurring sub-problems (e.g., iterative solvers for large systems, dissipative differential equations)

Open questions:

- Do controllers yield similar results for a broad class of problems?
- Will future hardware allow for tunable accuracy?
- What kind of fault models are reasonable?
- Will a notion of 'controller cost' be available?

