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Motivation and Objective

I Faults are inevitable in high-performance computing

I Fault handling is an active and diverse field of research:

I Reliability:
I Quantify the rate of faults
I Allocate reliable and unreliable memory/operations to meet a

user-specified level of reliability
I Use checkpointing, redundancy, checkers, etc. to detect faults

I Accuracy:
I Exploit algorithm-dependent properties (conditioning, contraction,

etc.) to allow for small faults [Stoyanov and Webster 2013]
I Reformulate existing algorithms to make them fault-resilient

[Bridges et al. 2012]
I Allow users to specify an acceptable level of variability in the results

of a code executed on unreliable hardware

Can uncertainty quantification help trade acceptable inaccuracies for
efficiency?
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Accuracy Scaling: Adaptively Controlled Hardware
A possible way of controlling accuracy:

I Hardware design may expose tuning controllers ν to the software engineer

I Allow for scaling of fault magnitudes by setting each controller ν ∈ [0, 1]

I ν = 0 means that no controller is applied; the code
is executed on completely unreliable hardware

I ν = 1 means that all faults are filtered; the code
is executed on completely reliable hardware

I Associate a cost function with the controller setting, for instance
determined by the hardware specification
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Accuracy Scaling: Adaptively Controlled Hardware
A possible way of controlling accuracy:

I Partition user code into n blocks

I Execute each block on a separate unit that is assigned to a controller νi ,
i.e., with a user-prescribed allowable fault magnitude

I Spread of possible results of the code can be controlled by adjusting the
controllers {ν1, ..., νn}
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Accuracy Scaling: Adaptively Controlled Hardware
Example: Singular values of a matrix A after a

fault-corrupted QR decomposition

I Subdivide QR decomposition algorithm into 3 blocks

I Compute Householder matrices �
I Compute R = Qn · · ·Q1A

I Assemble Q = QT
1 · · ·QT

n

I Fault model:
I Frequency of faults: 1 per 105

I Magnitude of faults: 1.0− νi

I Application: A ∈ R50×50 with 8 distinct
singular values

I How much fault corruption can enter
the computation while allowing correct
reconstruction of the singular value multiplicities?
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Accuracy Scaling: Adaptively Controlled Hardware
Example: Singular values of a matrix A after a

fault-corrupted QR decomposition
Perform 1000 runs with a fixed spectrum and a
random eigenbasis for each sample

I Controllers ν = {0.0, 0.0, 0.0},
i.e., the code is executed on unreliable hardware

I No reconstruction of the rank is possible
I Matrix may become singular because of faults
I Conclusion: QR decomposition should be computed with greater accuracy
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Accuracy Scaling: Adaptively Controlled Hardware
Example: Singular values of a matrix A after a

fault-corrupted QR decomposition
Perform 1000 runs with a fixed spectrum and a
random eigenbasis for each sample

I Controllers ν = {0.9, 0.9, 0.9},
i.e., the code is executed on nearly-reliable hardware

I Reconstruction of rank/multiplicities is possible
I Can the QR decomposition can be computed more efficiently (smaller ν)?
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Accuracy Scaling: Adaptively Controlled Hardware
Example: Singular values of a matrix A after a

fault-corrupted QR decomposition
Perform 1000 runs with a fixed spectrum and a
random eigenbasis for each sample

I Controllers ν = {0.8, 0.8, 0.8},
i.e., the reliability of the hardware is adjusted to the code

I Reconstruction of rank/multiplicities is possible
I Increased efficiency while maintaining sufficient accuracy
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Finding the Optimal Controllers
I User specifies acceptable variability TOL of results/outcomes y

I Find controllers {ν1, . . . , νn} that minimize the costs C and meet the
tolerance TOL on variability of the results yν1,...,νn

I Offline: compute and store controllers in a library (e.g., using DFO)

I Online: pick suitable controller for the application at hand
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Example: Prothero-Robinson ODE with Contractive Paths
I Linear system of differential equations with system matrix A

I Attraction of trajectories to stable paths if A only has negative eigenvalues
I Application in modeling chemical and biological processes

I Find controllers ν1, ν2, ν3 such that average variance
of the eigenvalues of A is less than 1%

Optimal controllers: ν1 ν2 ν3

0.7237 0.5657 0.7608

I Exact solution (without fault injection)

I 8 stable paths (red lines)
I 20 solution trajectories (black lines)
I Solver: implicit Euler method
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Example: Prothero-Robinson ODE with Contractive Paths

I Average trajectories over 1000 runs on ν-reliable hardware

I (0, 0, 0)-reliable hardware:

I Averages of fault-corrupted trajectories (left)
I Distribution of solutions at final time t = 20 (right);

red dots indicate the exact solution
I Failed solutions (exceeding 103) are filtered out (9.78% of runs)
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Example: Prothero-Robinson ODE with Contractive Paths

I Average trajectories over 1000 runs on ν-reliable hardware

I (0.7237, 0.5657, 0.7608)-reliable hardware:

I Averages of fault-corrupted trajectories (left)
I Distribution of solutions at final time t = 20 (right);

red dots indicate the exact solution
I Failed solutions (exceeding 103) are filtered out (3.82% of runs)
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Example: Jacobi Iterative Solver for the Helmholtz Equation
I Solution of the discretized Helmholtz equation, ∆u − αu = f ,

on [−1, 1]2 with Dirichlet boundary condition u
∣∣
∂[−1,1]2 = 0

I Jacobi iterative method, i.e., solve Au = F using
the iteration Duk+1 = F − Ruk , A = D + R

I Use only one controller ν and apply 100 Jacobi iterations

I Optimize controller such that Var[‖u100 − u99‖2] ≤ τ for
τ ∈ {10−2, 10−3, 10−4, 10−5} (bottom to top in figure)

I Tighter tolerances yield more costly controllers
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UQ for HPC: Opportunities and Limitations
I Allow for controlled inaccuracies to increase efficiency, using a

probabilistic approach

I Potentially expensive offline phase to create a library of controllers

I Cheap online phase while executing the code
I Soft errors have reduced impact on results due to controllers
I Potential for faster performance due to fewer hard failures

I Approaches to achieve accuracy thresholds may not be general purpose
tools, but rather seem problem-specific

I Should then exploit common numerical properties like conditioning,
damping, contraction, etc., to generalize the applicability of controllers

I Possibly provide toolbox for frequently occurring sub-problems (e.g.,
iterative solvers for large systems, dissipative differential equations)

I Open questions:
I Do controllers yield similar results for a broad class of problems?
I Will future hardware allow for tunable accuracy?
I What kind of fault models are reasonable?
I Will a notion of ‘controller cost’ be available?
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